

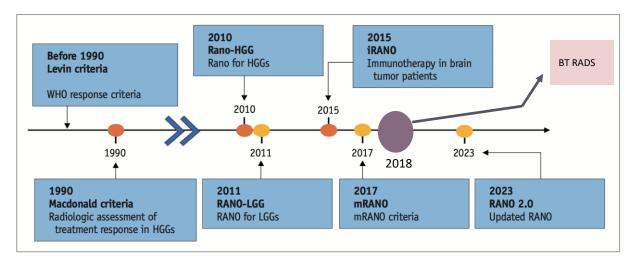
Reunión Anual SOCIEDAD ESPAÑOLA DE NEURORRADIOLOGÍA

7 - 9 de noviembre de 2024 • SAN SEBASTIÁN

SEDE: Hotel Barceló Costa Vasca

BT RADS: PROS Y CONTRAS

Dr. Alberto Cabrera Zubizarreta HT Médica



7 - 9 de noviembre de 2024

Adaptado de Wo SE et al 2024.https://doi.org/10.3348/kjr.2024.0016

- Al TI-RADS: Artificial Intelligence-Thyroid Imaging-Reporting and Data System 15
- BI-RADS: Breast Imaging-Reporting and Data System 2
- Bone-RADS: Bone Reporting and Data System 19
- BT-RADS: Brain Tumor Reporting and Data System 18
- BTI-RADS: Solitary bone tumor imaging reporting and data system 22
- C-RADS: CT Colonography Reporting and Data System 2
- CAD-RADS: Coronary Artery Disease-Imaging Reporting and Data System 2
- CO-RADS: COVID-19 Reporting and Data System 16
- COVID-RADS: COVID-19 Imaging Reporting and Data System 5 GI-RADS: Gynecologic Imaging-Reporting and Data System 11
- - LI-RADS: LIver Imaging-Reporting and Data System 2
 - LU-RADS: LUng-Reporting and Data System 13,14
- Lung-RADS: Lung Imaging-Reporting and Data System 2,14
- MET-RADS: METastasis-Reporting and Data System for Prostate Cancer 7
- MY-RADS: MYeloma Response-Assessment and Diagnosis System 6
- NI-RADS: Neck Imaging-Reporting and Data System 2
- NS-RADS: Neuropathy Score Reporting and Data System 20
 - O-RADS: Ovarian-Adnexal Reporting and Data System 10,11
 incorporating O-RADS US and O-RADS MRI
 OT-RADS: Osseous Tumor Reporting and Data System
- PI-RADS: Prostate Imaging-Reporting and Data System 2
- - RI-RADS: Reason for exam Imaging-Reporting and Data System 9 TI-RADS: Thyroid Imaging-Reporting and Data System 2
- VI-RADS: Vesical Imaging-Reporting and Data Syst

C RADS

BI RADS

PI RADS

BONE RADS

LUNG RADS

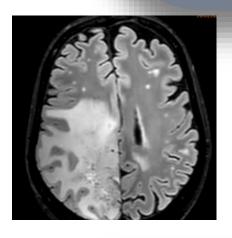
O RADS

LI RADS

NI RADS

TI RADS

Works-in Progress					
Soft Tissue-RADS	Soft Tissue Lesions				
Brain Tumor-RADS	Brain Tumor				
TBI-RADS	Traumatic Brain Injury				
PE-RADS	Pulmonary Embolism				
VI-RADS	Vesical Imaging				
KI-RADS	Kidney Masses				
Work	Works Under Consideration				
No current	topics under consideration				


7 - 9 de noviembre de 2024

- Publicado en el año 2018
- Colaboración multidisciplinar neurorradiológica, neuroquirúrgica y neuro oncológica (EMORY)
- Simplificar y mejorar los informes ámbito clínico
- 3 PILARES: Imagen, Clínica y Tratamiento (temporalidad)
 - CATEGORÍA (0-4)
- Categoría se acompaña de una recomendación de manejo

• FLAIR

S.E.N.R Sociedad Española de Neurorradiología

- T1 Contraste
- Efecto de masa
- Lesiones nuevas

- Estable / Progresión
- Antiangiogénico/Corticoide/RDT

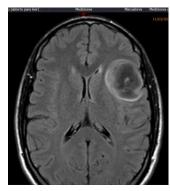
7 - 9 de noviembre de 2024

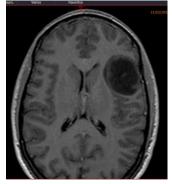
Categoría O Basal

Categoría O Basal

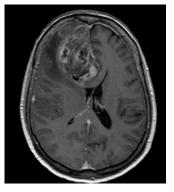
Categoría 1 Mejoría Imagen

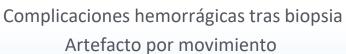
2 subcategorías


Categoría 2 Estabilidad Imagen

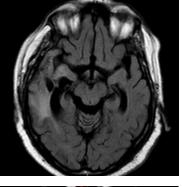

Categoría 3 Empeoramiento Imagen

3 subcategorías


Categoría 4 Empeoramiento Imagen

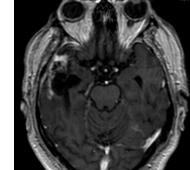

Estudio basal
Puede ser el de diagnóstico o el más reciente desde la intervención quirúrgica
Estudios incompletos o no diagnósticos

7 - 9 de noviembre de 2024



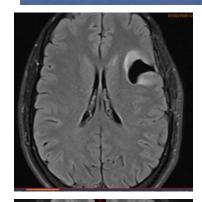
Categoría 1 Mejoría Imagen

Clínicamente estable


Mejoría o estabilidad FLAIR Disminución de la captación Mejora o estabilidad efecto de masa No nuevas lesiones FLAIR

16/12/22

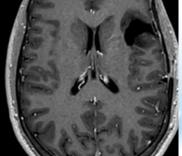
1a: Sin antiangiogénico ni corticoide


1b: Antiangiogénico o corticoide

La recomendación en estas categorías es seguir con los controles pautados

Categoría 2 Estabilidad Imagen

Clínicamente estable


No hay modificación en FLAIR No hay modificación en la captación No hay modificación en el efecto de masa No nuevas lesiones en el FLAIR

27/01/21



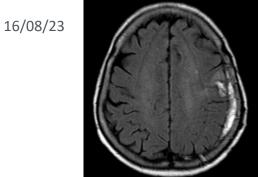
07/02/20

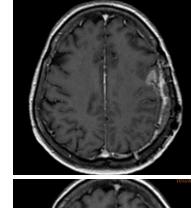
7 - 9 de noviembre de 2024

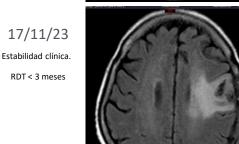
Categoría 3A

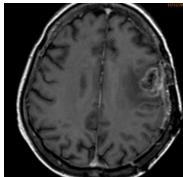
Categoría 3 Empeoramiento Imagen

Categoría 3B

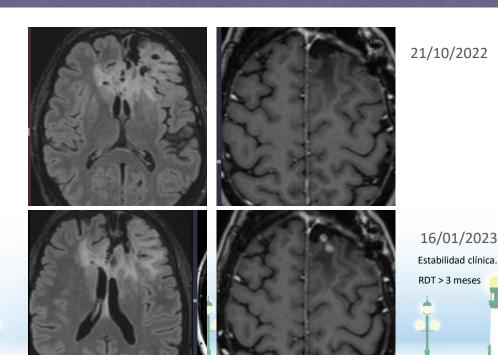

Indeterminado


Clínicamente estable


Clínicamente estable


Aumento del componente FLAIR y/o captación
Aumento del efecto de masa
Ausencia de nuevas lesiones Flair o captación fuera de la zona de irradiación
Primeras 12 semanas tras la finalización de la **RDT**

Aumento del componente FLAIR o captación
Aumento del efecto de masa
Ausencia de nuevas lesiones Flair o captación fuera de la zona de irradiación
Pasadas 12 semanas tras la finalización de la **RDT**



La recomendación en estas categorías sería acortar el control de imagen

7 - 9 de noviembre de 2024

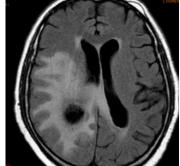
Progresión

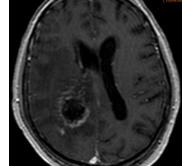
Categoría 3C

Progresión clínica

Incremento en el componente FLAIR y captación < 25% Aumento del efecto de masa Ausencia de enfermedad captante fuera de la zona de radiación

> Lesión indeterminada fuera del área de RDT Componente FLAIR sin captación de contraste.

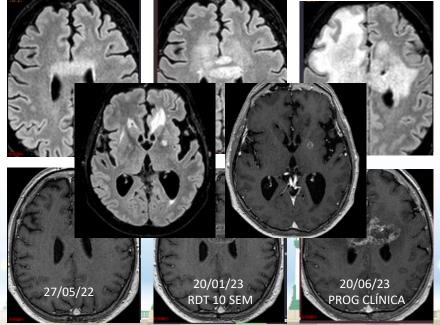

14/05/24



3C: La recomendación es acortar el tiempo de exploración o modificar régimen de tratamiento

Progresión clínica

4: La recomendación es modificar el régimen de tratamiento

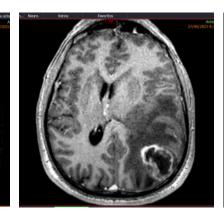

Categoría 4 Empeoramiento Imagen

Progresión clínica

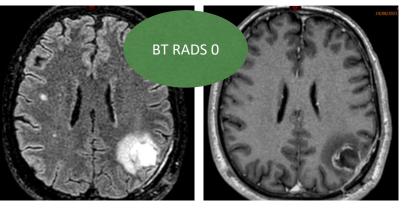
Incremento en el componente FLAIR y captación > 25% Aumento del efecto de masa

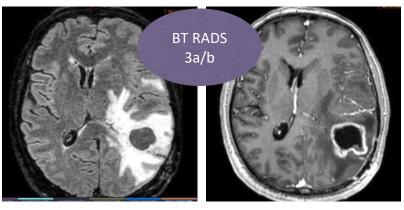
Incremento progresivo de FLAIR y captación en dos estudios sucesivos

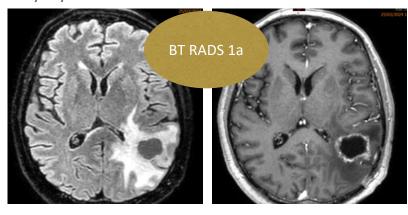
Lesión sospechosa fuera del área de RDT Componente FLAIR y captación de contraste.

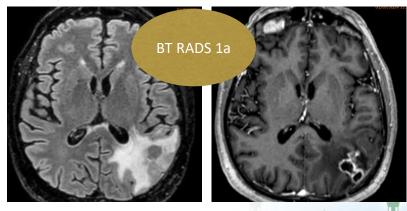

SAN SEBASTIÁN

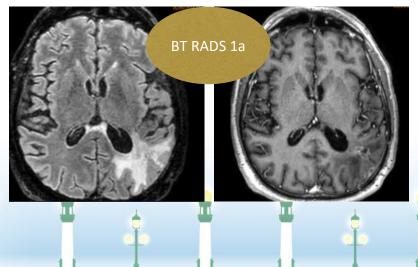
7 - 9 de noviembre de 2024


Varón 53 años GB wild type.


27/06/2023

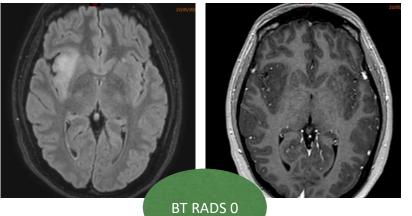

14/08/2023 Fin RDT


30/11/2023 RDT 3 meses 1 semana. Clínica estable

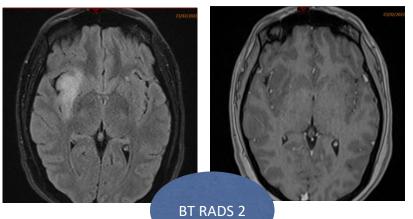

25/04/2024 TMZ. Clínica estable

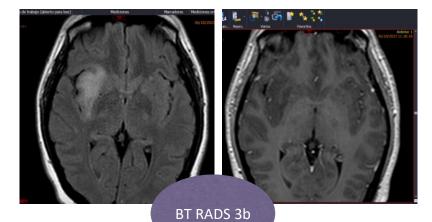
01/07/2024 Clínica estable

26/09/2024 Clínica estable


SAN SEBASTIÁN

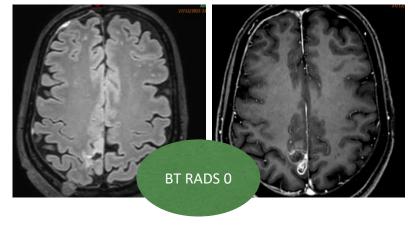
7 - 9 de noviembre de 2024

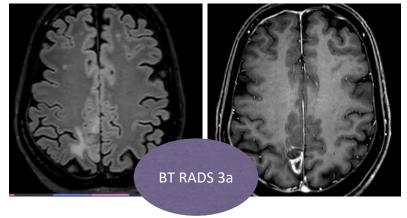

Astrocitoma G2 IDH mutado



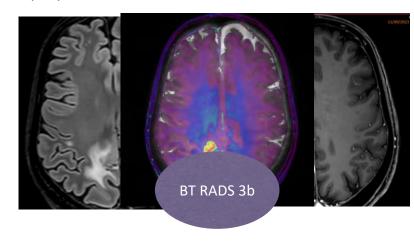
23/02/2022

26/10/2023 Estabilidad clínica

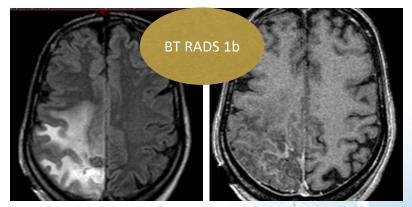

Mujer de 46 años. GB IDH Widt Type.

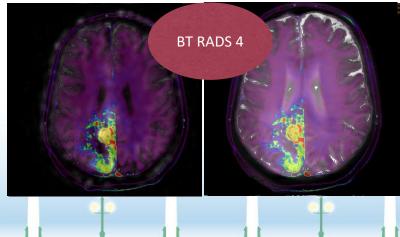

7 - 9 de noviembre de 2024

SAN SEBASTIÁN


27/12/2022 Biopsia

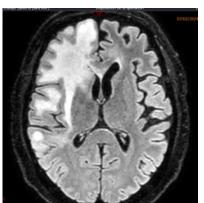
27/06/2023 < 3 meses RDT. Clínicamente estable

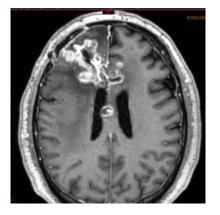

11/09/2023 > 3 meses RDT. Clínicamente estable

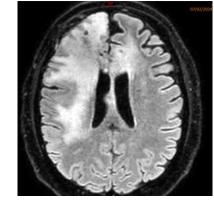

15/12/2023

06/03/2024. Antioangiogénico

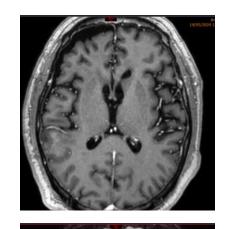

14/05/2024

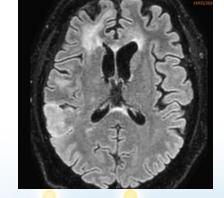


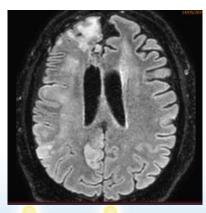

GB IDH Widt Type.



07/02/2022







14/05/2022 Avastin. Clínicamente estable

7 - 9 de noviembre de 2024

A diferencia de otros criterios previos BT RADS:

1) No especifica como deben realizar se las medidas para determinar si hay un más o menos de un 25% de componente FLAIR o captación. Uni o bidimensionales, volumétricas. Seguir criterios RANO.

Muchas categorías no dependen sólo de la medida del tumor ya que hay ocasiones en los que determinar modificaciones del tumor es díficil e implementar una medida determinada puede tener mucha variabilidad.

- 2) No cuantifica el grado de respuesta, si es parcial o completa ya que el impacto clínico no es tan significativo.
- 3) Elimina algunos términos que podían ser confusos como pseudorespuesta o pseudoprogresión, o radionecrosis

Estos cambios aunque aparecen mayoritariamente en ventanas temporales pueden solaparse

- 4) No incluye las técnicas funcionales, en principio por la variabilidad institucional.
- 5) Facilita un informe estructurado que permite una mejor compresión del informe, con menos ambigüedades y más conciso y fácil de usar para investigación.

MRI OF THE BRAIN WITHOUT AND WITH IV CONTRAST

CLINICAL INDICATION: brain tumor Tumor Type & Mutations: [tumor type] Surgical history: [surgical history] Radiation history: [radiation history] Relevant Medications: [medications]

TECHNIQUE: Detailed description of technique tailored to institution/examination.

COMPARISON: [last comparison date]

FINDINGS: TUMOR:

Location: [tumor location]

FLAIR:

[change in FLAIR at primary tumor site]

[presence of new sites of FLAIR abnormality]

Enhancement:

[change in enhancement at primary tumor site]

[presence of new sites of enhancement]

Perfusion: [perfusion findings, if performed]

Diffusion: [diffusion findings]

Posttreatment changes: [brief description of other postsurgical findings]

OTHER:

[presence of acute infarction]

[presence of new/significant hemorrhage]

[hydrocephalus]

[herniation]

[presence of new/unexpected fluid collection]

IMPRESSION:

- 1. [Brain tumor] status posttreatment. [brain tumor surveillance score]
- 2. [Other relevant findings]

7 - 9 de noviembre de 2024

MRI OF THE BRAIN WITHOUT AND WITH IV CONTRAST

CLINICAL INDICATION: [imported history]

Tumor Type & Mutations: [fill-in:tumor type] Surgical History: [fill-in:last surgery date] Radiation History: [fill-in:radiation completion date]

Relevant Medications: [fill-in:medications (avastin or steroids)]

Pre-contrast sagittal and axial T1-w, and axial T2-FLAIR, GRE, and diffusion-w sequences of the brain with ADC maps. [Perfusion or spectroscopy if present] Post-contrast axial fat-saturated T2-w and T1-w, and sagittal volumetric T1-w images of the brain with axial and coronal reformations. Intravenous contrast material was administered for the examination.

COMPARISON: [<None.>]

FINDINGS:

TUMOR:

Location: [fill-in:location]

[No change in extent of nonenhancing FLAIR abnormality.] [fill-in:Additional flair description] [No new sites of FLAIR abnormality.]

[No change in extent of enhancing component at primary site.] [fill-in:Additional enhancement description] [No new sites of enhancement.]

[No diffusion abnormality to suggest hypercellular tumor.]

Perfusion (only in studies with perfusion):

[No evidence of abnormal hyperperfusion (rCBV).]

Spectroscopy (only in studies with spectroscopy):

[<Normal metabolite ratios.>]

Posttreatment changes:

[<Expected post treatment changes are noted.>]

ADDITIONAL FINDINGS:

Infarction: [No acute infarction.]

Extra-axial Collection: [<No unexpected fluid collection.>]

Ventricular System: [No hydrocephalus.] Major Intracranial Flow Voids: [<Normal.>]

Osseous Structures: [<Expected marrow signal.>]

Included Orbits: [<Normal.>]

Paranasal Sinuses: [Predominantly clear.] Tympanomastoid Cavities: [<Normal>].

0 - New baseline, incomplete study, or otherwise unable to categorize

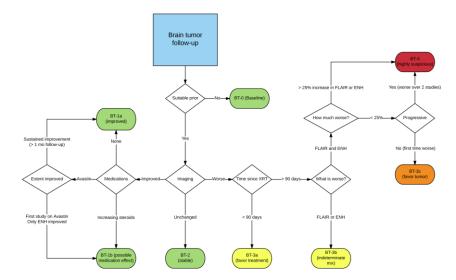
1a - Improvement in imaging findings suspected to reflect decreasing tumor burden and/or treatment

1b - Improvement in imaging findings potentially due to effect from medications such as steroids or initiating avastin

2 - No appreciable change from the prior

3a - Worsening imaging findings favored to represent treatment effects, including radiation therapy and

3b - Worsening imaging findings favored to represent an indeterminate mix of treatment effect and tumor worsening


3c - Worsening imaging findings favored to represent increasing burden of tumor

4 - Worsening of imaging findings highly suspicious for tumor progression

1. [Glioblastoma/astrocytoma/oligodendroglioma] status post treatment. [No appreciable change in

2. [<Otherwise expected post-treatment findings.>]

tumor compared to the prior study (Category: BT-2).]

7 - 9 de noviembre de 2024

156 results

Filters applied: in the

O-RADS US v2022: Ovarian-Adnexal Re

Cite Strachowski LM, Jha P, Ph Reinhold C. Suh-Burgmar

Radiology. 2023 Sep:308(

PMID: 37698472 Revi

Additional morphologic f

Groot J, Gilbert MR, Huang R, Lassm

Stupp R, Villanueva-Meyer JE, Wick

J Clin Oncol. 2023 Nov 20;41(33):518

PURPOSE: The Response Assessmen

(RANO-HGG) and low-grade glioma

High- and Low-Grade Gli

Groot J, Gilbert MR, Huang R, La

Stupp R, Villanueva-Meyer JE, W

J Clin Oncol. 2023 Nov 20;41(33)

Over time, some limitations of th

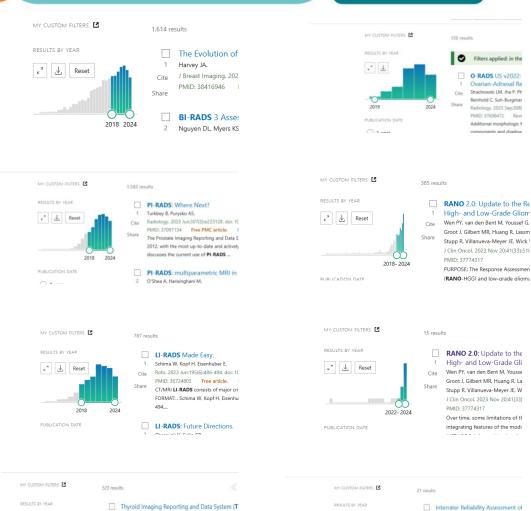
integrating features of the modi

Radiol Imaging Cancer. 2024 Sep:6(5):e2490

PMID: 39177471 Free PMC article. N

External validation of the Brain Tur

12 the multidisciplinary management


PMID: 37774317

11 (BT-RADS).

Cite Harlianto NI.

PUBLICATION DATE

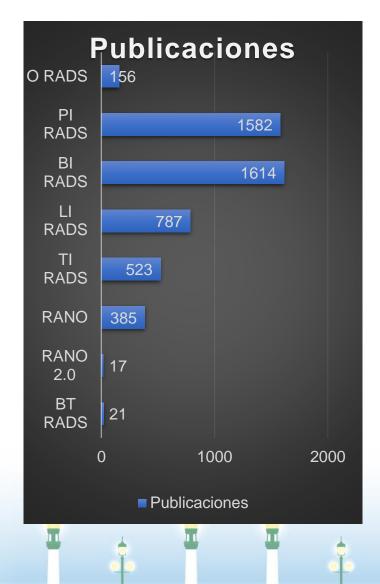
components and shadow

Tessler FN, Middleton WD, Grant EG.

PMID: 29558300 Review.

Radiology. 2018 Apr;287(1):29-36. doi: 10.1148/radiol.201717

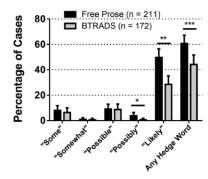
In ACR TI-RADS, points in five feature categories are summe Recommendations for biopsy or US follow-up are based on t

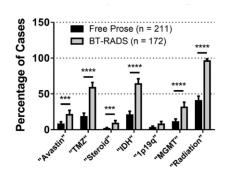

maximum diameter. The purpose of this article is to o ...

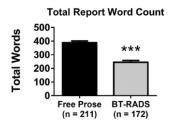
ACR TI-RADS: Pitfalls, Solutions, and Future Dir Tannouni RR Hri IN McOupan TS Lalwani N Ou II

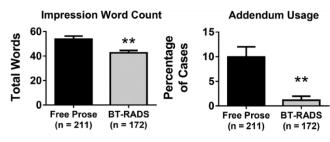
κ" <u>↓</u> Reset

2018








7 - 9 de noviembre de 2024

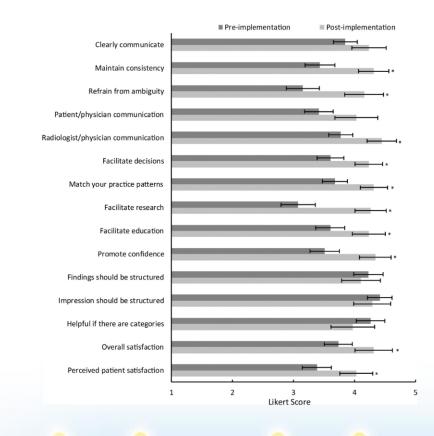
History Words	Hedge Words
1p/19q	Likely
Avastin	Possible
IDH	Possibly
MGMT	Some
Radiation	Somewhat
Steroid	
Temozolomide (TMZ)	

Zhang et al 2019. https://doi.org/10.1016/j.acra.2019.07.028

Claridad del informe

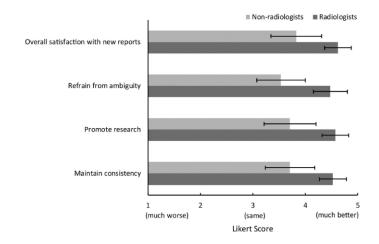
- Mejoría en la consistencia
- Disminución de la ambigüedad
- Informes más claros
- Mejor comunicación con clínicos/pacientes

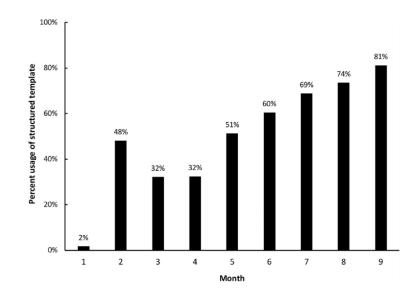
7 - 9 de noviembre de 2024


	All	Radiologist	Nonradiologist	p value
How well do the current radiology reports				
Clearly communicate the relevant findings	3.9	3.7	4.0	0.0587
Maintain consistency	3.4	3.2	3.7	0.0841
Refrain from ambiguity	3.2	2.9	3.4	0.0979
Promote clear communication	3.4	3.1	3.7	0.0078
between patient and physician				
Promote clear communication between	3.8	3.5	4.1	0.0020
radiologist and ordering physician				
Facilitate decision-making for treatment	3.6	3.3	3.9	0.0042
Match your practice patterns	3.7	3.4	4.0	0.0062
Facilitate research	3.1	2.5	3.7	< 0.001
Facilitate trainee (resident and fellow) education	3.6	3.3	3.9	0.0086
Promote confidence in report findings	3.5	3.2	3.9	0.0057
How strongly do you agree with the following statements				
Finding sections should adhere to a structured format	4.2	4.3	4.1	0.3785
Impression sections in radiology reports should	4.4	4.4	4.4	0.7733
adhere to a structured format				
It would be helpful if report impressions provided	4.3	4.6	3.9	0.0035
categories which corresponded to suggested				
management decisions				
Overall satisfaction				
Overail, now satisfied are you with the primary	3.7	3.5	4.0	0.0264
brain tumor MRI reports?				
Overall, what is your perception of patient	3.4	3.1	3.6	0.0378
satisfaction with brain tumor MRI reports?				
What is your overall level of trust in the	3.9	3.7	4.2	0.0345
information contained in radiology reports				
for MRIs on brain tumor patients?				

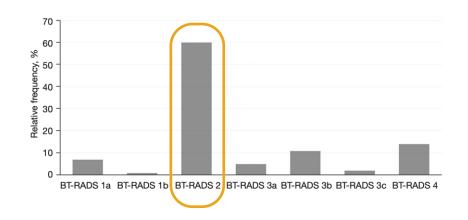
Values are based on a 5-point Likert scale (1-Never, 2-Rarely, 3-Sometimes, 4-Often, 5-Always). Values in bold are less than 3.5 and in italic are greater than $4 \cdot p$ values are for comparison between radiologists and nonradiologists (p < 0.05 is significant; bold).

Gore et al 2019. Acad Radiol 2019; 26:974À980. https://doi.org/10.1016/j.acra.2018.12.023




Cuestionario incorporación BT RADS

7 - 9 de noviembre de 2024


- Los **residentes** tienen más confianza cuando se enfrentan al caso con este esquema de informe frente al texto libre
- La formación es más sencilla
- Se facilita el uso para investigación

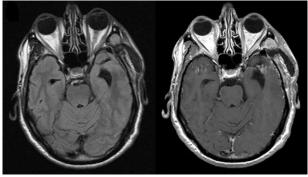
7 - 9 de noviembre de 2024

S.E.N.R Sociedad Española de Neurorradiología

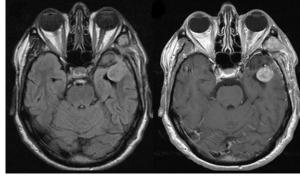
Concordancia interobservador

	Table 2 Interrater agreement					
	Rate of agreement	Percentages	k	95% CI	Level of agreement	
	All cases	82%	0.70	0.62-0.78	Substantial agreement	
	Astrocytoma grade 4	82%	0.70	0.60-0.80	Substantial agreement	
(Astrocytoma grade 3	61%	0.51	0.39-0.64	Moderate agreement)
	Astrocytoma grade 2	92%	0.78	0.33-1.00	Substantial agreement	
	Oligodendroglioma grade 3	90%	0.78	0.57-0.99	Substantial agreement	
(Oligodendroglioma grade 2	50%	0.32	0.03-0.61	Slight agreement)
	All cases: RAD vs. NEURORAD	91%	0.86	0.74-0.98	Almost perfect agreement	
	All cases: RES vs. NEURORAD	80%	0.66	0.57-0.76	Substantial agreement	

Parrillo et al 2023. Quant Imaging Med Surg 2023;13(11):7423-7431

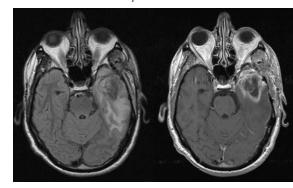

Concordancia	4 RAD	3 RAD	2 RAD	0 RAD
	103/147 70%	25/147 17%	19/147 13%	0/147

- En el 18% casos la disparidad hubiera implicado un cambio en el manejo
- Algunos subtipos tienen peor concordancia
 - N pequeña
 - Discordancia entre grado y captación



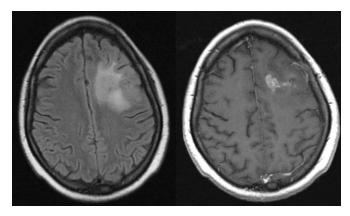
7 - 9 de noviembre de 2024

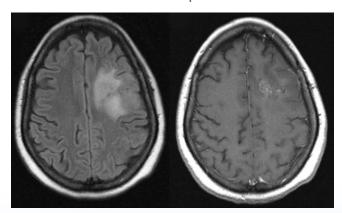
Astro 4. Basal postquirúrgico


Un mes post cirugía

3c 50%

4 50%


2 meses post RDT


3a 100%

Oligo 2. Siete meses tras cirugía y 3 meses tras RDT

3 meses después

1a 75%

2 25%


7 - 9 de noviembre de 2024

Concordancia + OS

	RD1 vs. RD2*	RD1 vs. Consensus*	RD2 vs. Consensus*
Score 1a	70	70	75
Score 2	92.4	97	97
Score 3a	66.7	83.3	71.4
Score 3b	0	33.3	0
Score 3c	50	100	66.7
Score 4	60	100	75
Overall (average)	62.7	83.3	69.3
к value (p-value)	0.67 ± 0.06 (< 0.001)	0.85 ± 0.04 (< 0.001)	0.79 ± 0.05 (< 0.001)

ВТ	T-RADS score, n (%)		
-	0	4 (4)	
	1	9 (9)	
	2	67 (67)	
	3A	6 (6)	
	3B	1 (1)	
	3C	8 (8)	
	4	5 (5)	

Trivedi 2024. Pol J Radiol 2024; 89: e148-e155. DOI: https://doi.org/10.5114/pjr.2024.136390

- Funciona mejor en los extremos
- Categoría 3 depende algo más de la experiencia o "intuición"
- Concordancia en las decisiones de manejo con comité del 90%

^{*}All the numbers in the table represent percentages

7 - 9 de noviembre de 2024

Table 3Frequency distribution of the BT-RADS categories by the 2 observers.

Category		Observer 1 N (%)	Observer 2 N (%)
BT-RADS 1	1a	6 (7.4)	5 (6.2)
	1b	2 (2.5)	5 (6.2)
BT-RADS 2	2	12 (14.8)	15 (18.5)
BT-RADS 3	3a	14 (17.2)	11 (13.6)
	3b	13 (16)	11 (13.6)
	3c	18 (22.2)	19 (23.5)
BT-RADS 4	4	16 (19.8)	15 (18.5)

BT-RADS: brain tumor reporting and data system.

Table 5Inter-reader agreement between the 2 observers of the different categories of BT-RADS.

Variable	Cohen's Kappa	Level of agreement	P value
BT-RADS 1			
- BT-RADS 1a	0.903	99 %	< 0.001
- BT-RADS 1b	0.556	96 %	< 0.001
BT-RADS 2	0.574	89 %	<0.001
BT-RADS 3			
-BT-RADS 3a	0.858	96 %	< 0.001
-BT-RADS 3b	0.511	88 %	< 0.001
-BT-RADS 3c	0.685	89 %	< 0.001
BT-RADS 4	0.721	91 %	< 0.001
Total score	0.710	74 %	< 0.001
	BT-RADS 1 - BT-RADS 1a - BT-RADS 1b BT-RADS 2 BT-RADS 3 -BT-RADS 3a -BT-RADS 3b -BT-RADS 3c BT-RADS 4	BT-RADS 1 - BT-RADS 1a 0.903 - BT-RADS 1b 0.556 BT-RADS 2 0.574 BT-RADS 3 -BT-RADS 3a 0.858 -BT-RADS 3b 0.511 -BT-RADS 3c 0.685 BT-RADS 4 0.721	BT-RADS 1 - BT-RADS 1a 0.903 99 % - BT-RADS 1b 0.556 96 % BT-RADS 2 0.574 89 % BT-RADS 3 -BT-RADS 3a 0.858 96 % -BT-RADS 3b 0.511 88 % -BT-RADS 3c 0.685 89 % BT-RADS 4 0.721 91 %

BT-RADS: brain tumor reporting and data system.

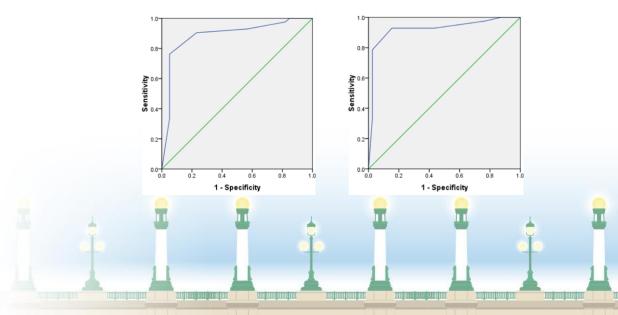

Recurrencia HGG

Table 4Validity of the BT-RADS for predicting recurrent high-grade glioma.

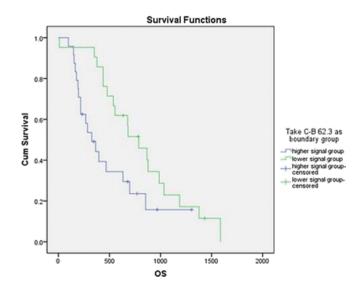
	Observer 1	Observer 2
AUC	0.887	0.923
Cut off	≥3b	≥3b
CI	0.807-0.967	0.856-0.990
Sensitivity	90.5 %	92.9 %
Specificity	76.9 %	84.6 %
PPV	80.8 %	86.6 %
NPV	88.3 %	91.7 %
Accuracy	83.9 %	88.9 %

AUC: Area under curve, CI: confidence interval, PPV: positive predictive value, NPV: negative predictive value.

7 - 9 de noviembre de 2024

12

¿Y si incluimos otras variables de imagen?

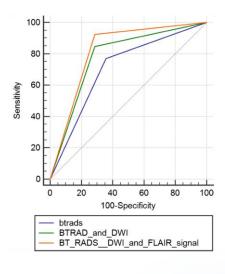

10

Increased signal intensity in FLAIR sequences in the resection cavity can predict progression and

CrossMark

progression-free survival in gliomas

Nicolae Sarbu^{a,*}, Laura Oleaga^b, Izaskun Valduvieco^c, Teresa Pujol^b, Joan Berenguer^b



Quan et al 2018. J Neurooncol 137, 631-638 (2018)

 Table 4 Diagnostic performance of BT-I ADS category 3 before and after addition of DWI and FLAIR signal within resection cavity

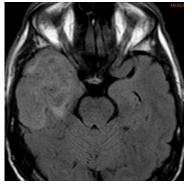
 Parameters
 Before adding DWI
 After adding DWI and FLAIR signal

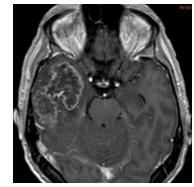
 AUC
 0.706
 0.780
 0.819

True-positive findings (n)

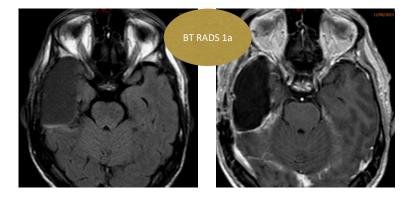
Table 3 Distribution of BT-RADS category 3 and ADC_{mean} among recurrent and non-recurrent glioma patients

11

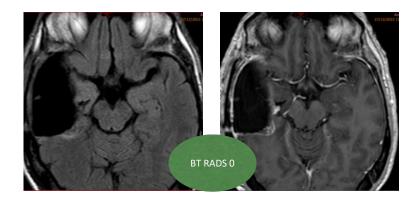

Variables	Number	Final diagnosis				P-value	
		Recurrence			Non-recurrence		
		Number (%)	ADC v	lue mean (range)	Number (%)	ADC value mean (range)	
BT-RADS 3a	2	0 (0)	0		2 (13.3)	1.5 (1.4-1.6) × 10 ⁻³ mm/s	< 0.001
BT-RADS 3b	20	9 (69.2)	0.9 (0.7	$(-1.40) \times 10^{-3}$ $^{2}_{mm/s}$	11 (78.6)	1.2 (1-1.6) × 10 ⁻³ _{mm/s}	
BTIRADS 3c	5	4 (30.1)	0.8 (0.7	$(-0.9) \times 10^{-3}$ mm /s	1(7.1)	1.1×10^{-3} mm/s	
Total	27	13(48.1)	0.9 (0.7	$(-1.4) \times 10^{-3}$ mm/s	14(51.9)	$1.15 (1.04-1.6) \times 10^{-3}$ mm/s	

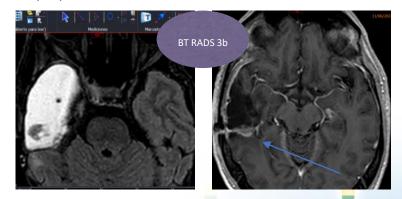

Metwally et al 2023. Egypt J Radiol Nucl Med (2023) 54:52

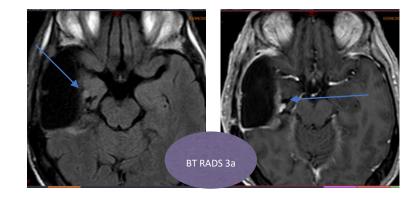
• Tres casos de ADC reducido por necrosis coagulativa

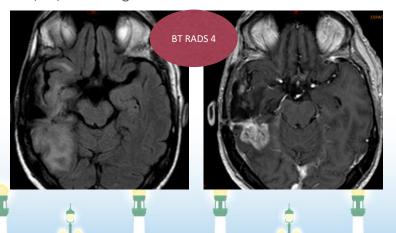


14/10/2022




11/06/2023


27/12/2022


27/11/2023 Estabilidad clínica

03/04/2023 Fin RDT 03/03/2023

23/04/2024 Progresión clínica

7 - 9 de noviembre de 2024

¿Y si incluimos otras variables de imagen?

AUC Variables Recurrence (n=51)Non-recurrence (n=40) P value **BT-RADS** < 0.001 0.76 3a 6 (11.8) 22 (55.0) 16 (31.4) 10 (25.0) 3c 29 (56.8) 8 (20.0)

1.3 (1.1-1.6)

1.3 (1.2-1.4)

< 0.001

< 0.001

1.6

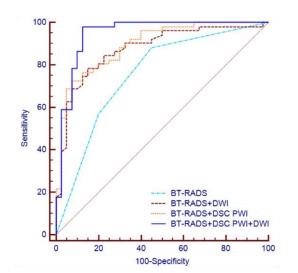
1.0

0.87

0.85

Data presented as median (IQR) or n (%)

2.3 (1.9-2.7)


0.8 (0.7-1.0)

 $rCBV_{max}$

ADCmean

 $(\times 10^{-3} \text{ mm}^2/\text{s})$

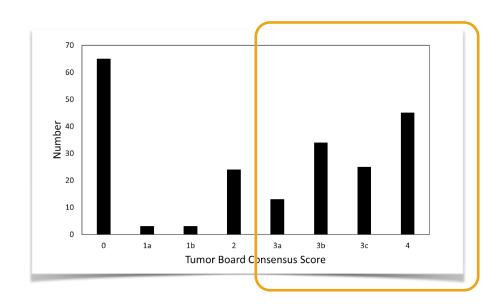
BT-RADS Brain Tumor Reporting and Data System, $rCBV_{max}$ maximum relative corebral blood volume, ADC_{mean} mean apparent diffusion coefficient, AUC area under the ROC curve

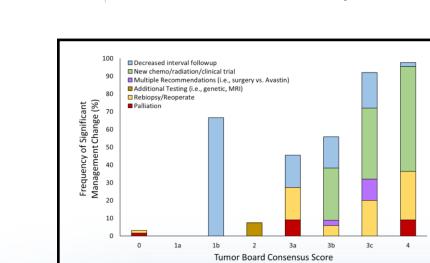
Yang et al. 2019 https://doi.org/10.1007/s11060-019-03387-6

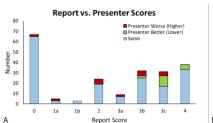
Table 3 The predictive value of each combination for tumor recurrence

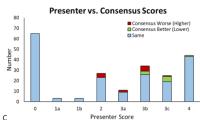
Combinations	AUC (95%CI)	Accuracy	Sensitivity (95%CI)	Specificity (95%CI)	PPV	NPV
					(95%CI)	(95%CI)
BT-RADS	0.76 (0.66-0.84)	0.74	0.88 (0.75-0.95)	0.55 (0.39-0.70)	0.71 (0.59-0.82)	0.79 (0.59-0.91)
BT-RADS+DSC	0.90 (0.81-0.95)	0.80	0.73 (0.58-0.84)	0.00 (0.75-0.97)	0.90 (0.76-0.97)	0.72 (0.57-0.83)
BT-RADS+DWI	0.88 (0.80-0.94)	0.80	0.78 (0.64-0.88)	0.83 (0.67-0.92)	0.85 (0.71-0.93)	0.75 (0.59-0.86)
BT-RADS+DSC+DWI	0.95 (0.88–0.98)	0.92	0.98 (0.88-0.99)	0.85 (0.70-0.94)	0.89 (0.77-0.96)	0.97 (0.83-0.99)

BT-RADS Brain Tumor Reporting and Data System, DSC dynamic susceptibility contrast, DWI diffusion-weighted imaging, AUC area under the ROC curve, CI confidence interval, PPV positive predictive value, NPV negative predictive value


	BT RADS	DWI	PWI	BTRADS DWI	BTRADS PWI	BTRADS DWI/PWI
	0.76	0.85	0.87	0.88	0.90	0.92


7 - 9 de noviembre de 2024


Comité de tumores


Abidi et al. Tomography 2023, 9, 859-870. https://doi.org/10.3390/tomography9020070

¿Recomendación 1 b y 3 a/b?

7 - 9 de noviembre de 2024

PROS

- Simple
- "Fácil" de aplicar
- Reduce la ambigüedad del texto libre
- Mejora la comunicación
- Recomendación de manejo

CONS

- Separación categorías y recomendaciones de manejo es un poco simplista
- Determinación de crecimiento es "libre"
- No incorpora secuencias funcionales
- No introduce características moleculares de los tumores

¿Capacidad pronóstica?

Categoría 3

7 - 9 de noviembre de 2024

Hallazgo	Lesiones nuevas	FLAIR	Efecto de masa	Contraste	BT RADS
K	0,89	0.67	0.69	0.54	0.75

PROG RESIÓ N	1 a	1b	2	3a	3b	3c	4
	0-18%	10-25%	14-31%	25-42%	61-89%	75-91%	91-100%
)	

Recurrencia HGG

Questions	Score					
Reporting of post-treatment glioma imaging should follow a structured format	24					
Radiology reports following BT-RADS clarify the significant findings	17					
The structured reporting template of BT-RADS maintains the consistency of the reports	24					
The application of BT-RADS constrains radiologists' and clinicians' communication	23					
Questions						
The application of BT-RADS enables a more understandable and concise report	21					
Much training is required before the application of BT-RADS	21					
BT-RADS is an easily applicable system by both junior and senior radiologists	16					
The application of BT-RAD needs highly experienced radiologists	21					
Reporting using BT-RADS helps trainee education	20					
Using a structured reporting template of BT-RADS saves time for radiologists	18					
BT-RADS promotes confidence in the final categorization of post-glioma imaging	16					
BT-RADS enables the determination of appropriate management strategy	19					
Some post-glioma imaging was difficult to interpret by BT-RADS	22					
BT-RADS is equivalent to other ACR reporting systems, such as BI-RADS and LI-RADS	14					
The current BT-RADS system is satisfied	15					
BT-RADS needs further modification	24					

Almaki et al 2024. Biomedicines 2024, 12, 887. https://doi.org/10.3390/biomedicines12040887

The application of BT-RADS should be encouraged

